

Final 40-50 T Cooling

R.B. Palmer
Physics Department
Brookhaven National Laboratory

Muon Accelerator Program Review Fermilab, August 24–26, 2010

Cooling Scheme

 \circ IN: \mathcal{E}_{\perp} =400 μ m $|\mathcal{E}_{\parallel}|$ =1.1 mm Goal: $|\mathcal{E}_{\perp}|$ =25 μ m $|\mathcal{E}_{\parallel}|$ =72 mm

○ Transmission goal: 70%

Minimum emittances vs. B and Energy

- O At lower energies
 - □ Focusing stronger & Energy loss greater
- O Cooling to any emittance, with any B, if energy is low enough!

Energy loss

- \circ But the lower the energy, the steeper the slope of dE/dx vs. energy
- \bigcirc And the faster dE/E rises: giving worse longitudinal heating

One stage

- \circ Cooling limited to \approx 20% before dE/dx \rightarrow excessive
- \circ Drift needed to phase rotate to new longer bunch and ok dE/dx
- Field must be reversed to avoid angular momentum build up

Design & optimization

- O For each stage, with starting emittances from last stage, choose
 - Initial energy
 - Initial energy spread
 - □ hydrogen length
- Run ICOOL only for length in hydrogen with fixed field
- Assume no dilution from match & re-acceleration (justified later)
- O Calculate decay in length for phase rotation & acceleration
- Optimize for:
 - extstyle ext
 - \Box A reasonable $\Delta \mathcal{E}_{\perp}/\mathcal{E}_{\perp}$ to keep down number of stages
 - Moderate particle loss for given emittance reduction

Example solution

13 stage, all magnets at 40 T

- $^{\circ}$ Each stage cools transverse emittances by pprox 20%
- O Longitudinal emittance increases by a similar amount
- A reasonable dp/p requires growing bunch lengths

Simulated performances

- 40 T solution meets emittance goals
- O 50 T solution provides greater margin and/or improved performance
- O Extrap. suggests 30 T would cause only moderate performance loss

Details 1

- $^{\circ}$ Hydrogen and magnet lengths fall from 75 cm to pprox 4 cm
- O Bunch rms length rises from 5 cm to 300 cm
- \circ RF frequency falls from pprox 300 MHz to pprox 4 MHz

Assumed gradients

Only induction linacs give required gradients for long bunches

Details 2

- \circ Beam rms radii fall from 2 cm to pprox 6 mm
- $^{\circ}$ Beam energy falls from 70 MeV (135 MeV/c) to \approx 6 MeV

Simulated transmission

- O Losses a little above goal: 65% vs. goal of 70%
- O More than made up by other systems (discussed later)

Example of matching & re-acceleration

- O This example is from the 50 T sequence
- O It includes the final and penultimate stages

Induction Linac

Induction Linac Waveforms

Study II Induction design

Phase space evolution

Emitance evolution

- O In match and re-acceleration:
 - $0.01\%~\mathcal{E}_{\perp}$ dilution $0.5\%~\mathcal{E}_{||}$ dilution
- 7.3% loss
- O Negligible dilutions justify design assumption above

System Transmission

Example from recent compilation with

8 GeV protons

and MARS 15:

	transmission	cumulative	mu/p
After rotation	transmission	1.0	0.219
After rotation		1.0	0.219
Best 21 bunches	0.7	0.7	0.153
Charge separation	0.9	0.63	0.138
6D Cooling before merge	0.47	0.30	0.065
Merge	0.88	0.26	0.057
6D Cooling after merge	0.48	0.12	0.027
40 T Cooling	0.65	0.08	0.018
Acceleration	0.7	0.057	0.0125

- 40 T cooling has higher losses than goal
- O But made up in production & charge separation
- For 2 10¹² muons requires 1.6 10¹⁴ 8 GeV protons/bunch
- O Power at 15 Hz: 3.1 MW (cf 4 MW baseline)
- O We still have a margin

Other Final Cooling schemes to study

- O The object is to achieve lower transverse emittances
 - □ to allow lower muons/bunch at higher rep. rate
 - easier p driver, less collective effects,
 - □ less detector background
- O Reverse emittance exchange in wedges
 - Could be done inside 40 T solenoids
 - Not yet simulated
- Emittance exchange at higher energy using septa
 Not yet simulated
- O Use of either requires more efficient earlier cooling

TASKS

- Automate optimization of multi-stage systems
- O Design sequence using 30 T solenoids and determine consequences
- O Simulate full sequence of stages at chosen field
- O Study space charge and loading
- O Confirm simulations using G4-beamline
- Integrate into full capture-cool-acceleration scheme
 - □ Design late 6D cooling to match required 135 MeV/c mom.
 - □ Design initial acceleration of 6 MeV, very long, output bunches
- O Demonstrate 40 T solenoid (discussed in later talks)
- O Study schemes for lower emittances

Conclusion

- O Sequence of 40 T cooling stages appears to meet emittance goals
 - □ Sequence of 50 T solenoids would give more margin, lower emittance and somewhat improved luminosity
 - □ Extrap suggests 30 T would cause only moderate performance loss
- O Lower (65% vs. 70%) simulated transmission appears more than compensated by gains elsewhere
- Simulation of matching and re-acceleration between last stages showed negligible dilution and acceptable transmission
- O But much work still to be done

Appendices

- O Details of matching between final 50 T solenoids
- O Septum emittance exchange
- O Reverse emittance exchange

Detail of 50 T matching & field flip

- \circ Adiabatic match from 50 T \longrightarrow 1.25 T
- O Rapid field flip with beta matching

Septum emittance exchange

- Should be done also in orthogonal direction
 or use septa in x and y followed by 4 channels
- O Can be done at any energy
- \circ Will be less efficient than 40-50 T cooling for ${\cal E}_{\perp} >$ 25 $\,\mu$ m but, in principle, will work for any emittance

Reverse emittance exchange in wedges

- O Still requires low beta from strong solenoid
- O But lowers emittance faster, is less affected by scattering
- O Can exchange to lower emittances